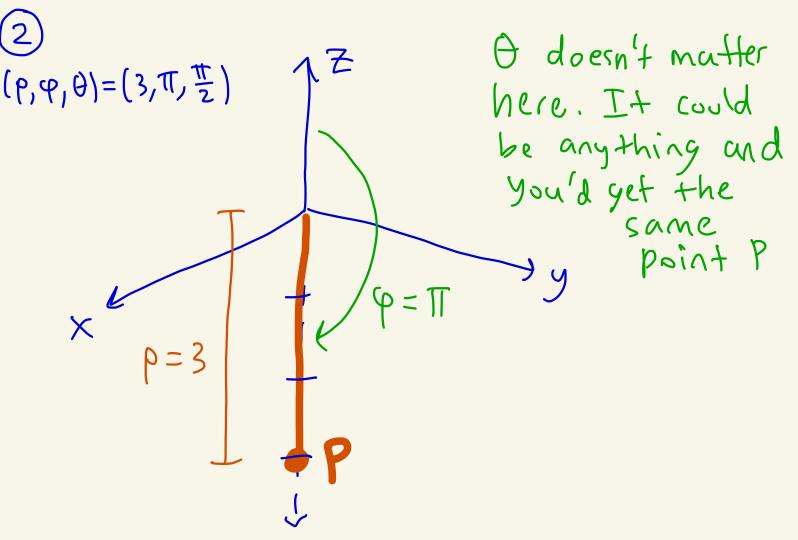

Math 2130 HW 7 Solutions

		1


The curtesian coordinates are:

$$(x,y,z)=(0,1,0)$$

You can also get them from:

$$x = \rho sin(\varphi) cos(\theta) = 1 \cdot sin(\frac{\pi}{2}) \cdot cos(\frac{\pi}{2}) = 0$$

 $y = \rho sin(\varphi) sin(\theta) = 1 \cdot sin(\frac{\pi}{2}) \cdot sin(\frac{\pi}{2}) = 1$

$$Z = P \cos(\varphi) = 1 \cdot \cos(\frac{\pi}{2}) = 0$$

The cartesian coordinates are: (x,y,z)=(0,0,-3)

Yun can also get them from: $x = \rho sin(\varphi) cos(\theta) = 3 \cdot sin(\pi) \cdot cos(\frac{\pi}{2}) = 0$

 $\Delta = b \sin(b) = 3 \cdot \sin(a) - \sin(\frac{a}{2}) = 0$

 $Z = \rho \cos(\varphi) = 3 \cdot \cos(\pi) = -3$

(P,
$$\varphi$$
, θ)=(4, $\frac{\pi}{3}$, ϕ)

(P, φ , θ)=(4, $\frac{\pi}{3}$, ϕ)

(P, φ , θ)=(4, $\frac{\pi}{3}$, ϕ)

(P, φ , θ)=(4, $\frac{\pi}{3}$, ϕ)

(P, φ , θ)=(4, $\frac{\pi}{3}$, ϕ)

(P, φ , θ)=(4, $\frac{\pi}{3}$, ϕ)

(P, φ , θ)=(4, $\frac{\pi}{3}$, ϕ)

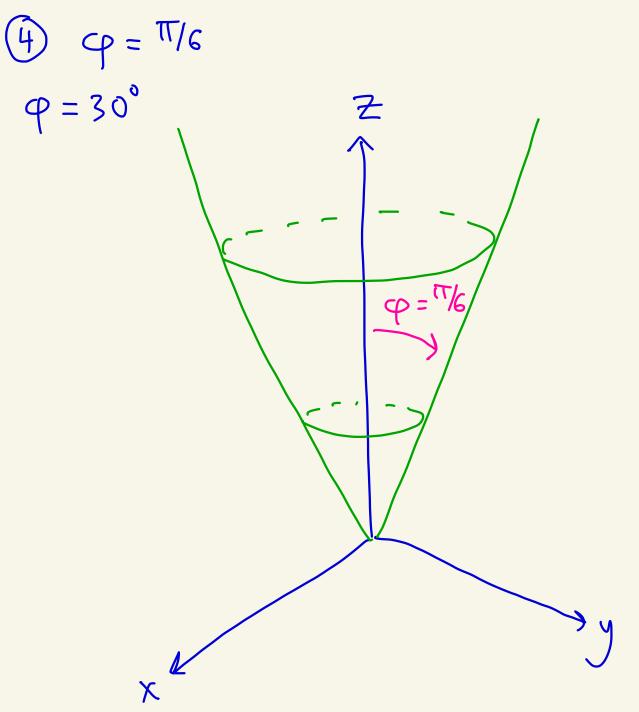
(P, φ , θ)=(4, $\frac{\pi}{3}$, ϕ)

(P, φ , θ)=(4, $\frac{\pi}{3}$, ϕ)

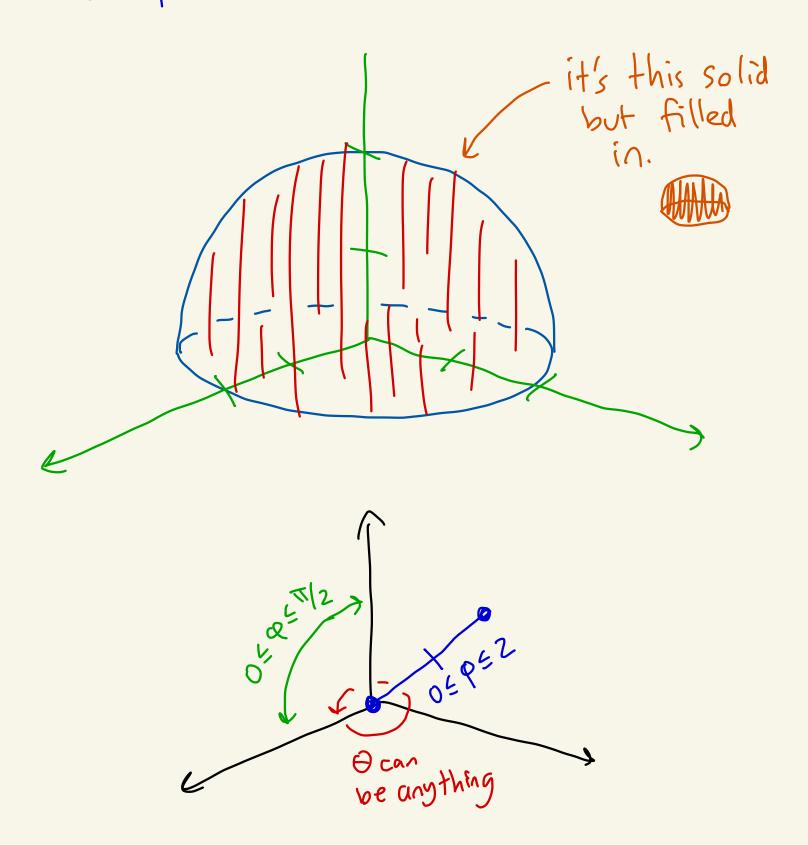
(P, φ , θ)=(4, $\frac{\pi}{3}$, ϕ)

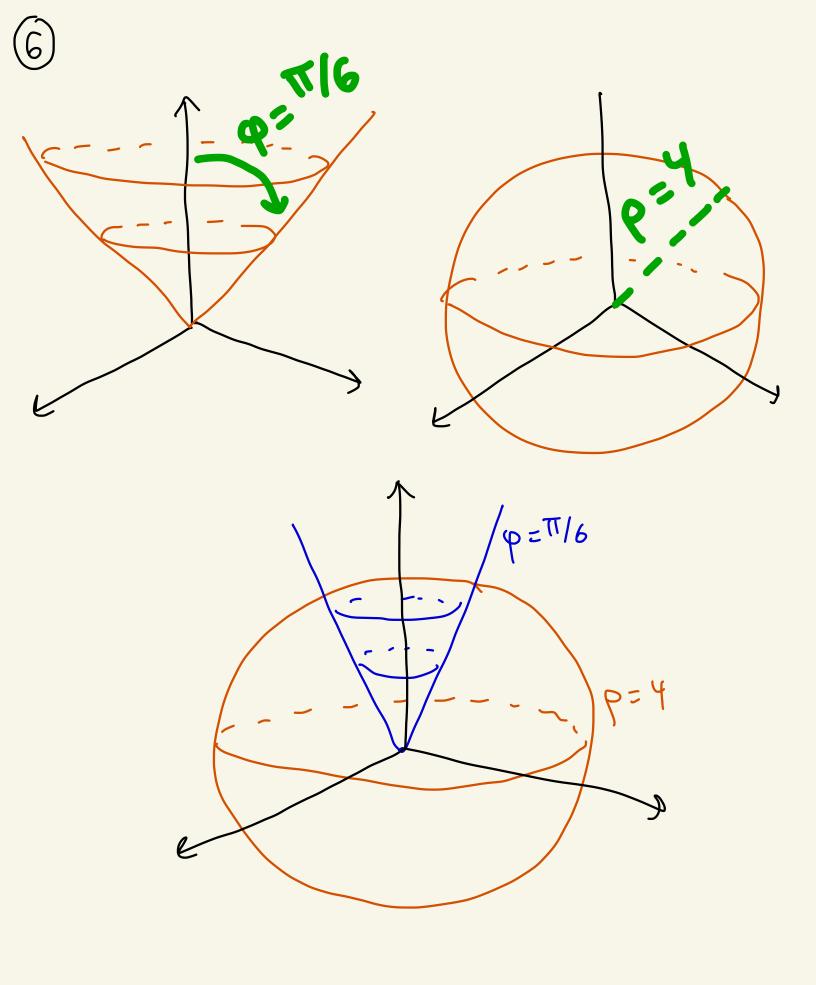
(P, φ , θ)=(4)

(P, φ)=(4


The Cartesian coordinates are gotten from:

$$X = \rho \sin(\varphi) \cos(\theta) = \frac{4}{3} \sin(\frac{\pi}{3}) \cdot \cos(\theta) = 2\sqrt{3}$$


$$y = \rho \sin(\varphi) \sin(\theta) = \frac{4}{3} \sin(\frac{\pi}{3}) \cdot \sin(\theta) = 0$$


$$y = \rho \cos(\varphi) = \frac{4}{3} \cos(\frac{\pi}{3}) = 2$$

$$(x, y, z) = (2\sqrt{3}, 0, 2)$$

$$\begin{array}{c} (5) & p \leq 2 \\ 0 \leq \phi \leq \pi/2 \end{array}$$

Solid E is parameterized by

$$=\int_{2\pi}^{\infty}\int_{\sqrt{\pi}}^{\pi}\int_{\sqrt{\pi}}^{\sqrt{\pi}}\int_{\sqrt{\pi}}^{\sqrt{\pi}}\frac{1 \cdot p^{2} \sin(\varphi) d\varphi d\varphi d\varphi}{1 \cdot p^{2} \sin(\varphi) d\varphi d\varphi d\varphi}$$

$$= \int_{2\pi}^{2\pi} \int_{\pi/6}^{\pi/6} \left[\frac{1}{3} \rho^3 \right]_{\rho=0}^{q} \int_{Sin(\phi)}^{\pi/6} d\phi d\phi$$

$$=\int_{2\pi}^{2\pi}\int_{3\pi}^{\pi/6}\frac{4^{3}}{3}\sin(\varphi)\,d\varphi\,d\theta$$

$$=\int_{2\pi}^{2\pi}\left[-\frac{3}{2}\cos(\varphi)\Big|_{\varphi=0}^{\pi/6}\right]d\theta$$

$$= \int_{0}^{2\pi} \left[-\frac{64}{3} \left(\cos \left(\frac{\pi}{6} \right) - \cos \left(0 \right) \right) \right] d\theta$$

$$= \int_{2\pi}^{2\pi} -\frac{64}{3} \left(\frac{\sqrt{3}}{2} - 1 \right) d\theta$$

$$=\frac{-64}{3}(\frac{\sqrt{3}}{2}-1)\theta$$

$$=\frac{-64}{3}(\frac{\sqrt{3}}{2}-1)(2\pi-0)$$

$$= -\frac{64}{3} \left(\frac{\sqrt{3}}{2} - 1 \right) \left(2\pi \right)$$

$$= \frac{-128}{3} \pi \left(\frac{\sqrt{3}}{2} - 1 \right) \approx 17.958...$$

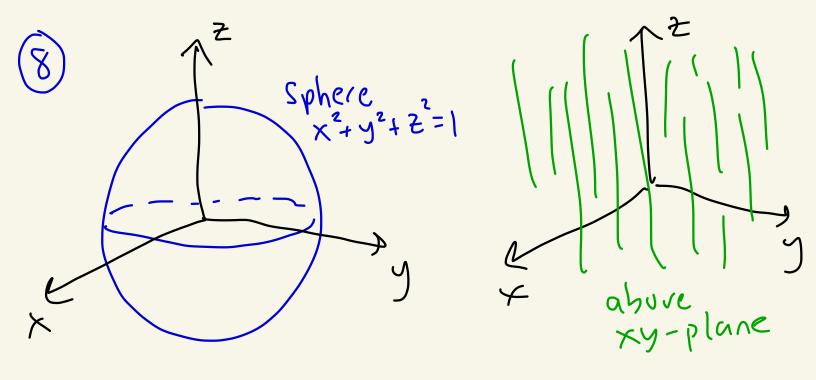
$$= \int \int \int (x^2 + y^2 + z^2) dV$$

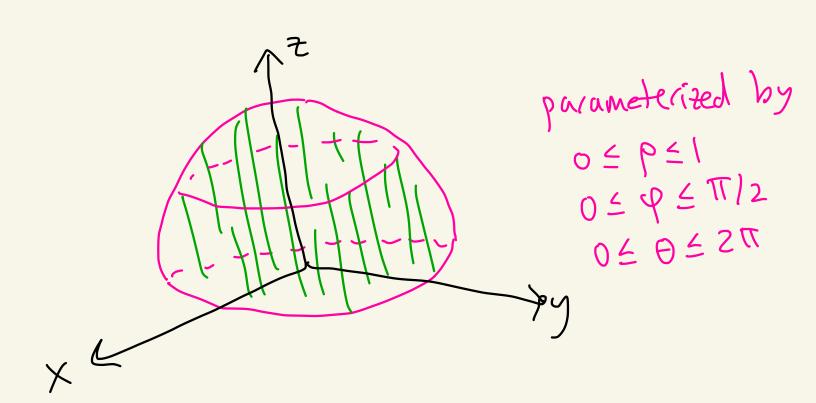
$$=\int_{0}^{2\pi}\int_{0}^{\pi}\int_{0}^{1}\rho^{2}\cdot\rho^{2}\sin(\varphi)d\rho d\varphi d\theta$$

$$=\int_{0}^{2\pi}\int_{0}^{\pi}\int_{0}^{1}\rho^{2}\cdot\rho^{2}\sin(\varphi)d\rho d\varphi d\theta$$

$$= \int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{1} \rho^{4} \sin(\varphi) d\rho d\varphi d\theta$$

$$= \int_{0}^{2\pi} \int_{0}^{\pi} \frac{P}{S} \Big|_{P=0}^{2\pi} \sin(\varphi) d\varphi d\theta$$


$$= \int_{0}^{2\pi} \int_{0}^{\pi} \left(\frac{1}{S} - 0\right) \sin(\varphi) d\varphi d\theta$$


$$= \frac{1}{S} \int_{0}^{2\pi} \left(-\cos(\varphi)\Big|_{\varphi=0}^{\pi}\right) d\theta$$

$$= \frac{1}{S} \int_{0}^{2\pi} \left(-\cos(\pi) - (-\cos(0))\right) d\theta$$

$$= \frac{1}{S} \int_{0}^{2\pi} 2 d\theta = \frac{1}{S} \left[2\theta\Big|_{0}^{2\pi}\right]$$

$$= \frac{1}{S} \left[2(2\pi) - 2(0)\right] = \frac{4\pi}{S}$$

$$= \int_{0}^{2\pi} \int_{0}^{\pi/2} \int_{0}^{2\pi} \rho \cdot \rho^{2} \sin(\varphi) d\rho d\varphi d\theta$$

$$= \int_{0}^{2\pi} \int_{0}^{\pi/2} \int_{0}^{2\pi} \rho \cdot \rho^{2} \sin(\varphi) d\rho d\varphi d\theta$$

$$= \int_{0}^{2\pi} \int_{0}^{\pi/2} \int_{0}^{1} e^{3} \sin(\varphi) d\varphi d\theta$$

$$= \int_{0}^{2\pi} \int_{0}^{\pi/2} \frac{1}{4} \left| \frac{1}{4} \right| \frac{1}{4} \right| \right| \right| \right| \right|}{1} \right| \right| \right| \right| \right| \right| \right| \right| \right| \right|$$

$$= \int_{0}^{2\pi} \int_{0}^{\pi/2} \frac{1}{4} (1-0) \sin(\varphi) d\varphi d\theta$$

$$= \int_{0}^{2\pi} \frac{\pi}{4} \sin(\varphi) d\varphi d\theta$$

$$= \int_{-\pi}^{2\pi} \left[-\frac{1}{4} \cos(\varphi) \left(\frac{\pi / 2}{\varphi = 0} \right) d\theta \right]$$

$$= \int_{0}^{2\pi} \left(-\frac{1}{4} \cos \left(\frac{\pi}{2} \right) - \left(-\frac{1}{4} \cos \left(0 \right) \right) \right) d\theta$$

$$= \int_{0}^{2\pi} \left(-\frac{1}{4} \cos \left(\frac{\pi}{2} \right) - \left(-\frac{1}{4} \cos \left(0 \right) \right) \right) d\theta$$

$$= \int_{0}^{2\pi} \left(-\frac{1}{4} \cos \left(\frac{\pi}{2} \right) - \left(-\frac{1}{4} \cos \left(0 \right) \right) \right) d\theta$$

$$= \int_{0}^{2\pi} \left(-\frac{1}{4} \cos \left(\frac{\pi}{2} \right) - \left(-\frac{1}{4} \cos \left(0 \right) \right) \right) d\theta$$

$$= \int_{0}^{2\pi} \left(-\frac{1}{4} \cos \left(\frac{\pi}{2} \right) - \left(-\frac{1}{4} \cos \left(0 \right) \right) \right) d\theta$$